
Exercise 4: Great Times with Recursion

EECS 111, Winter 2017

Due Friday, Feb 10th by 11:59pm

Introduction

In this assignment, you will practice writing recursive functions using ordinary recursion (i.e. without
accumulators), and iterative recursion (i.e. with accumulators).

For each problem, complete the following process:

1. Write the problem statement for the function.

;; compute the factorial of the given number

2. Write the type signature for the function.

;; fact : number -> number

3. Determine the base case for your recursion. This is the simplest case, in which the answer is trivial.

;; (fact 0) => 1

4. Write a test case (using check-expect) for the base case.

(check-expect (fact 0) 1)

5. Write multiple test cases for the recursive case. Remember to test for all edge cases, or situations
where your function might break.

;; using Racket's * function to avoid having to do math
(check-expect (fact 1) 1)
(check-expect (fact 5)

(* 5 4 3 2 1))

6. Finally, write the code itself. Remember that although the specifics will vary, you generally want to
have a pattern like this:

(if <BaseCase> ; (= n 0)
<BaseCaseResult> ; 1
<RecursiveStep>) ; (* n (fact (- n 1)))

If you have multiple cases, remember that the <RecursiveStep> can be any Racket expression, including
another if condition. Alternatively, if your function is more complicated, you may want to use cond
instead:

(cond
[<BaseCase> <BaseCaseResult>] ; [(= n 0) 1]
[<AnotherCase> <AnotherCaseResult>]
;; ...
[else <RecursiveStep>]) ; [else (* n (fact (- n 1)))]

where the <RecursiveStep> often takes the form

1



(<Combiner> <FirstPartOfData>
(<RecursiveCall> <RestOfData>))

Whether you use if or cond is purely a matter of style, but using cond can be easier to read for multiple
levels of logical branching.

VERY VERY IMPORTANT: Unless otherwise stated, you may not use map, filter, foldl,
foldr, apply, or build-list. You will not receive credit for solutions using these functions
(again, unless explicitly stated otherwise).

Part 1: Ordinary Recursion

For this section, use ordinary recursion (without an accumulator) for all your functions. This is the
simplest form of recursion, and the first version you learned in class.

Question 1: multiply-list

Write a recursive procedure, multiply-list, to compute the product of a list of numbers.

;; multiply-list : (listof number) -> number

For example, (multiply-list (list 1 2 3 4)) should return 24.

• Be sure to follow the steps listed in the introduction. You must include your own test cases,
signatures, and purpose statements.

• Note that the product of the empty list is defined to be 1, not 0.1

Question 2: my-iterated-overlay

It’s baaaaack! :ˆ) Write a recursive function, my-iterated-overlay, that behaves exactly the same way as
iterated-overlay.

;; my-iterated-overlay : (number -> image), number -> image

Here are some pointers and hints:

• You will need to return a blank image if the number of iterations is zero. You can do this by returning
empty-image (no parentheses needed – it’s a constant, not a function).

• Remember that calling (iterated-overlay proc 5) calls proc with the sequence 0, 1, 2, 3, 4. More
generally, calling (iterated-overlay proc count) will generate the sequence 0, 1, . . . , count − 1.

• Remember that (overlay a b) puts a on top of b, and (overlay b a) puts b on top of a. You need
to make sure the iterations stack appropriately. For instance, if gen is a generator function, the result
of calling (my-iterated-overlay gen 5) should place (proc 0) on top, then (proc 1), and so on,
with (proc 4) at the bottom.

Calling your function like this:

(my-iterated-overlay (lambda (n) (square (* n 10)
"solid"
;; make each iteration progressively lighter

1If you’re into math, that’s because it’s usually most useful to define the sum or product of an empty list as being the
“identity element” for the operation you’re performing (adding or multiplying). The identity element is the number you can
add/multiply another number by without changing the other number. So 0 is the identity element of + because x = x + 0. But
1 is the identity element of multiplication because x = x ∗ 1. Wow I just really love the properties of real numbers

2



(color (* n 50) 0 0)))
5) ; number of iterations

should return a result like this:

• Remember, you cannot use foldl, foldr, apply, etc.

Question 3: iterated-any

Now you will abstract your code from iterated-overlay just like we did in Exercise 2. Write a recursive
function, iterated-any, that takes an arbitrary combiner (a function with the signature image, image ->
image), a generator, and a number of iterations, and combines the results using the specified combiner.

;; iterated-any : (image, image -> image), (number -> image), number -> image
;; ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~
;; <Combiner> <Generator> <Count>

You can test your function against your implementation of my-iterated-overlay from the previous question.

Recall that iterated-overlay, iterated-beside, iterated-above, etc. all perform the same general task:
they call a generator some number of times, and then combine the resulting images into a single return value.
The name of each function specifies the combiner used:

;; square-gen : number -> image
(define (square-gen n)

(square (* n 10)
"solid"
(color (* n 50) 0 0)))

(check-expect (iterated-beside square-gen 3)
;; equivalent to using `beside` to combine
;; all of the iteration results
(beside (square-gen 0)

(square-gen 1)
(square-gen 2)))

Namely, passing in overlay as our combiner:

(iterated-any overlay <Generator> <Count>)

should be equivalent to just calling my-iterated-overlay:

(my-iterated-overlay <Generator> <Count>)

which, in turn, should be equivalent to calling the original:

(iterated-overlay <Generator> <Count>)

The same holds for iterated-beside, iterated-above, etc.

Interlude: ListTree

The next few questions will deal with trees of numbers.

3



A ListTree is a recursive data structure with the following definition:

;; A ListTree is one of:
;; - <Integer>
;; - (list <ListTree>)

Note that unlike lists you’ve seen before, we have made the (somewhat arbitrary) stipulation that a ListTree
is never empty. The base case is when the ListTree is just a plain old number.

Here are some examples of ListTree:

• 1

• (list 1 2)

• (list (list 1)
2
(list 1 4 5))

• (list 1
(list 2 1)
1
1)

• (list 1
(list 2

(list 3 3)
(list 2

(list 4 5))))

Question 4: count-tree

Write a recursive function, count-tree, that counts the numbers in a ListTree.

;; count-tree : ListTree -> number

• If a number appears twice, count both occurrences. That is,

(count-tree (list (list 1)
2
(list 1 4 7)))

;; => 5

• Remember that a ListTree can be an ordinary integer too, so

(count-tree (list 1))
;; => 1

(count-tree 1)
;; => 1

Question 5: sum-tree

Write a recursive function, sum-tree, that sums the numbers in a ListTree.

;; sum-tree : ListTree -> number

For instance,

4



(sum-tree (list (list 1)
2
(list 1 4 7)))

;; => 15

Remember to test for edge cases.

Question 6: max-tree

Write a recursive function, max-tree, that computes the largest number in a ListTree.

;; max-tree : ListTree -> number

For instance,

(max-tree (list (list 1)
7
(list 1 4 2)))

;; => 7

You may find it helpful to use the function max, which takes two or more numbers and returns the largest.

Again, remember to test for edge cases. ListTrees may contain any integer.

Question 7: depth-tree

Write a recursive function, depth-tree, that returns the number of levels of nesting in a ListTree.

;; depth-tree : ListTree -> number

For instance,

(depth-tree 1)
;; => 0, it's not even a list

(depth-tree (list 1 2))
;; => 1

(depth-tree (list (list 1)
7
(list 1 4 2)))

;; => 2

Whereas the previous three functions you wrote were very similar, depth-tree uses a different pattern, so
you can’t reuse your code as easily.

For this question, you MAY use foldl, foldr, map, and filter, but you don’t need to.

This one is hard! Think carefully and walk through some cases on paper if you’re having trouble.

Part 2: Iterative Recursion

To wrap up the assignment, you’ll tweak a few of your functions from Part 1 to use iterative recursion.
Recall that iterative recursion differs from ordinary recursion by the use of an accumulator argument, which
represents the partial result at the current point in time.

5



Question 8: multiply-list/iter

Rewrite multiply-list as an iterative recursive function, multiply-list/iter. The functions should
behave identically and have the same signature, but multiply-list/iter must use an accumulator,

;; multiply-list/iter : (listof number) -> number

Note that the iterative version uses the same signature as the ordinary recursive version.
However, you must use an accumulator argument, or you will lose credit for this function.

So, you will need to define a separate function that uses an accumulator, and have multiply-list/iter call
that function. You can do this using an entirely separate helper function, or a local expression. See the
slides or reading for details.

Question 9: iterated-overlay/iter

Rewrite my-iterated-overlay as an iterative recursive function, my-iterated-overlay/iter. I’m really
sorry the naming ended up being so unfortunate, it really wasn’t my intention. Once again, this function should
behave identically to my-iterated-overlay and have the same signature, but it must use an accumulator.

;; iterated-overlay/iter : (number -> image), number -> image

Question 10: iterated-any/iter

Same deal here. Rewrite iterated-any to use an accumulator.

;; iterated-any : (image, image -> image), (number -> image), number -> image
;; <Combiner> <Generator> <Count>

Turning It In

Make sure you’ve followed the process outlined in the introduction for every function, and that you’ve
thoroughly tested your functions for all possible edge cases.

Double check that you are not using map, filter, foldl, foldr, build-list, apply, or the original
cs111/iterated library in any of your functions except for Question 7, depth-tree.

When you’re happy with what you’ve got, upload everything to the handin server as usual.

6


	Introduction
	Part 1: Ordinary Recursion
	Question 1: multiply-list
	Question 2: my-iterated-overlay
	Question 3: iterated-any
	Interlude: ListTree
	Question 4: count-tree
	Question 5: sum-tree
	Question 6: max-tree
	Question 7: depth-tree

	Part 2: Iterative Recursion
	Question 8: multiply-list/iter
	Question 9: iterated-overlay/iter
	Question 10: iterated-any/iter

	Turning It In

