
Hints for Exercise 4: Recursion

EECS 111, Winter 2017

Due Wednesday, Jan 8th by 11:59pm

Question 1: multiply-list

For many list problems, this one included, the base case is when the list is empty, which you can check using
(empty? <List>).

Remember that you can divide a list into a head and tail using first and rest, respectively. first will
return the first element, and rest returns a new, shorter list. So for instance,

(define lon (list 1 2 3)) ; `lon` = "list of numbers"
(first lon) ; 1
(rest lon) ; (list 2 3)

(first (list 1)) ; 1
(rest (list 1)) ; empty

Look back at the slides for definitions of recursive procedures if you’re having trouble thinking of how to
approach this problem.

Question 2: iterated-overlay

Recall that if some-generator is a function number -> image, then

(iterated-overlay some-generator 3)

is equivalent to saying

(overlay (some-generator 0)
(some-generator 1)
(some-generator 2))

which, in turn, is equivalent to saying

(overlay (some-generator 0)
(overlay (some-generator 1)

(some-generator 2)))

This is a bit hard to read with the nesting, but all we’re doing here is saying

(overlay (some-generator 0) ; top image
<BottomImage>)

;; where <BottomImage>, in turn, is
(overlay (some-generator 1) ; top image

(some-generator 2)) ; bottom image

1



Question 3: iterated-any

This is just an abstraction of iterated-overlay. It might be helpful to go back to Exercise 2, and think
about the process you used to abstract between the last two bullseye functions. You should follow the same
workflow here.

Going from iterated-overlay to iterated-any is a lot like going from count-odd? to count in this week’s
tutorial.

Recall that iterated-overlay, iterated-beside, iterated-above, etc. all perform the same general task:
they call a generator some number of times, and then combine the resulting images into a single return value.
The name of each function specifies the combiner used:

;; square-gen : number -> image
(define (square-gen n)

(square (* n 10)
"solid"
(color (* n 50) 0 0)))

(check-expect (iterated-beside square-gen 3)
;; equivalent to using `beside` to combine
;; all of the iteration results
(beside (square-gen 0)

(square-gen 1)
(square-gen 2)))

Questions 4 through 6: count-tree, sum-tree, max-tree

All three of these functions have very similar structures. The data definition for a ListTree provides hints
regarding the structure of the function. Once again:

;; A ListTree is one of:
;; - <Number> <-- this is your base case
;; - (list <ListTree>) <-- this is your recursive case

Remember that you can use the predicates number? and list? to check if something is a number or a list,
respectively.

It might help to first write each of these functions for a single-layer list (i.e. no nested list hell), just to make
sure you understand the general concept of recursively counting, summing, computing the max, etc.

Namely, suppose we are writing a recursive function <DataType> -> <ReturnType>. Recall that the general
pattern for a recursive step looks like this:

;; <Combiner> is any function of the form
;; <ReturnType>, <ReturnType> -> <ReturnType>
(<Combiner> ...something with the first part of <DataType>...

...recursive call with the rest of <DataType>...)

Since we’re working primarily with numbers here, some combiners to consider are the arithmetic operations
+, *, -, etc. as well as the function max. Look up the documentation for max if you don’t know what it does.

Question 7: depth-tree

This one is hard! Previous questions have asked you to implement functions using either map, foldr, etc. or
recursion. It’s true that map and co. are implemented using recursion under the hood (they abstract over the
process of manually recurring on a list). However, this question is designed to show you that higher-order

2



functions and recursion can work together – in fact, many types of problems like this one are much easier if
you use both.

To break this question down, it’s crucial to understand (1) how the problem decomposes, and (2) how each of
the higher-order functions is used.

Let’s start with decomposing the problem. Returning to our trusty data definition for ListTree:

;; A ListTree is one of:
;; - <Number> <-- this is your base case
;; - (list <ListTree>) <-- this is your recursive case

So for any given ListTree, we have the following cases:

• It’s just a single number. (What should we return?)
• It’s a list of numbers. (What should we return?)
• It’s a list of (a list of numbers). . .

Now things start to get tricky. But whenever you see a recursive data structure like this, it’s a huge sign
you should be using recursion to solve the problem, so there’s probably going to be a recursive call in
here somewhere.

The main difference is that before, “paring down” our data divided things neatly into two parts.

• For a number, there’s n and (- n 1).
• For a one-dimensional list, there’s (first l) and (rest l).

But for a TreeList, we can’t just break things up this way. Consider the following example:

(define my-tree
(list (list 1 2)

(list 1 (list 2))))

Right off the bat, since my-tree is a list, we know the depth is going to be at least 1. The question is, how
do we account for the children?

• (first my-tree) gives us (list 1 2), which itself has a depth of 1.
• (rest my-tree) gives us (list 1 (list 2)), which itself has a depth of 2.

Clearly, we want to add the larger of these two depths. What function might we use to compute this value?

But we’re not quite done! Suppose we have even more items:

(define my-tree
(list (list 1 2)

(list 1
(list 2))

;; Three new friends!
1
(list 1

(list 2
(list 3)))

(list 1)))

Does your answer still work for an arbitrary number of list items? We need some way of retrieving the largest
depth out of an arbitrary number of list elements. Actually, we need some way to get the depth of all those
elements to begin with. This leaves us with two questions:

• Which higher order functions are good at applying some function to all the items in a list?
• which higher order functions are good at aggregating a list of results into a single result?

3



Iterative Recursion

Appendix 1: Iterative Recursion

For instance,

;; fact : number -> number
;; regular factorial with ordinary recursion
(define (fact n)

(if (= n 0)
1
;; Recursive Step
(* ; combiner

n ; current data
(- n 1)))) ; rest of our data

(fact 5) ; call our function

;; fact/iter : number, number -> number
;; factorial using iterative recursion
(define (fact/iter n acc) ; [1]

(if (= n 0)
acc ; [2]
;; Recursive Step
(fact/iter ; [3]
(- n 1)
(* n acc))))

(fact/iter 5 1) ; 1 is our starting accumulator

There are exactly three differences to note here, labeled as comments in the code above:

1. The addition of a new argument for the accumulator (the partial product, in this case). This is
reflected in:

1. An updated function header, (define (fact/iter n acc) ...)
2. An updated recursive call, which now takes two arguments: the decremented number, and the

new accumulator.

2. The base case now returns the accumulator rather than 1. That’s because the base case signals
we’re done recurring, so the “partial product” is really the “complete product” at that point, and we
can just return whatever value it’s accrued.

3. All of our computations have moved inside the recursive call. To be clear,

;; ordinary recursion
(* (<Combiner>

n <Current>
(fact (- n 1))) (<RecursiveCall> <Rest>))

;; iterative recursion
(fact/iter (<RecursiveCall>

(- n 1) <Rest>
(* n acc)) (<Combiner> <Current> <OldAcc>))

By making our combiner work on the accumulator, we can progress directly into the next recursion,
without waiting for the recursive result to finish expanding. In other words, we don’t need to leave

4



behind an expanding trail while we wait for the base case to hit:

;; 5! in progress, without accumulators
(* 5

(* 4
(* 3 ; this trail gets big really quickly

(fact (- 3 1)))))

;; 5! in progress, with accumulators
(fact/iter (- 3 1)

(* 3 20)) ; 20 is the accumulator 5 * 4

There’s one last caveat, though. Notice that instead of calling our function with

(fact 5)

we now have to call it with 1 as our starting accumulator:

(fact 5 1)

This is really annoying and also bad practice from a software design standpoint: if the starting accumulator is
always going to be 1, we should just write that into our software somehow. Leaving it to user discretion only
increases the risk of something going wrong (e.g. suppose someone accidentally writes 0, and now fact/iter
always returns 0 for every input).

So, the final step in converting a function to iterative recursion is to provide a wrapper of some
kind around your main recursive function. This wrapper should have the same signature as your main
function, without the accumulator, and it should kick off the recursive process by calling your main function
with the starting accumulator value.

You can accomplish this in one of two ways: by writing a separate wrapper function, or using local as a
wrapper.

1. Writing a separate wrapper function

;; 1. Rename our old function to fact/iter-helper

;; fact/iter-helper : number, number -> number
;; factorial using iterative recursion
(define (fact/iter-helper n acc)

(if (= n 0)
acc
;; Recursive Step
(fact/iter-helper
(- n 1)
(* n acc))))

;; 2. Make fact/iter a wrapper around the helper

;; fact/iter : number -> number
(define (fact/iter n) ; notice acc is gone again

(fact/iter-helper n 1))

;; Now we can use our iterative solution like before!
(fact/iter 5)

2. Using a local expression

;; Rename the original function to fact/iter-helper, and
;; dump it in the definitions part of a `local`.

5



;; fact/iter : number -> number
(define (fact/iter n)

(local [;; fact/iter-helper : number, number -> number
;; factorial using iterative recursion
(define (fact/iter-helper n acc)

(if (= n 0)
acc
;; Recursive Step
(fact/iter-helper
(- n 1)
(* n acc))))]

;; Now that we've locally defined our helper, we can
;; just call it in the body of the `local` like normal.
(fact/iter-helper n 1)))

So, to summarize, there are four steps involved with the transformation from ordinary recursion to iterative
recursion:

1. Add the accumulator argument to the function definition, and update the recursive call
2. Return the accumulator in the base case
3. Restructure the recursive step so that the recursive call is on the outside. Remember to pass in a new

accumulator, which should be the result of combining the current data with the old accumulator.
4. Finally, wrap everything up so the function has the same signature as before you added the new

argument. This means using a local or writing a helper function; both are perfectly reasonable
strategies.

6


	Question 1: multiply-list
	Question 2: iterated-overlay
	Question 3: iterated-any
	Questions 4 through 6: count-tree, sum-tree, max-tree
	Question 7: depth-tree
	Iterative Recursion
	Appendix 1: Iterative Recursion

