
Figure 1: Ply’s user interface
extends the Chrome CDT,
providing affordances for inspecting
a component of the page.

Ply: Visual Regression Pruning for
Web Design Source Inspection

Sarah Lim
Northwestern University
633 Clark St.
Evanston, IL 60208, USA
slim@u.northwestern.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’17 Extended Abstracts, May 06-11, 2017, Denver, CO, USA
ACM 978-1-4503-4656-6/17/05.
http://dx.doi.org/10.1145/3027063.3048427

Abstract
Despite the ease of inspecting HTML and CSS, web
developers struggle to identify the code most responsible for
particular stylistic effects, due to complex DOM structures
and CSS property cascades. In this paper, we introduce
Ply, a DOM inspection tool which augments the Chrome
Developer Tools to help developers explore complex
professional web designs. To compute source code
relevance, we introduce a technique called visual regression
pruning, which uses pixel-level screenshot comparison to
help developers locate CSS responsible for a webpage’s
appearance. A user selects an element, and Ply computes
the visual impact of each matched CSS property. If a
property does not affect the webpage, Ply filters it from the
inspector. In multiple iterations of needfinding studies,
developers located relevant code more quickly using Ply. In
a case study with the Airbnb homepage, Ply displays an
average of 49% fewer CSS properties per element,
compared to the Chrome Developer Tools as a control.

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation]: User
Interfaces

Author Keywords
CSS; reverse engineering; web development; end-user
programming

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

130

http://dx.doi.org/10.1145/3027063.3048427

Introduction
Web developers often seek design inspiration from existing
webpages, which offer developers the chance to learn from
professional implementation decisions. However,
developers struggle to locate and extract the specific lines
of code responsible for their desired stylistic outcomes.
Production CSS often includes frameworks such as Twitter
Bootstrap,1 or large common style guides containing
thousands of globally-scoped properties. To find the code
responsible for a webpage’s appearance, developers must
sift through complex HTML and CSS hierarchies.

Existing web inspection tools such as the Chrome
Developer Tools2 (CDT) offer element-based stylesheet
inspection, but less experienced developers struggle to
identify relevant properties from long lists of matched styles.
Conversely, systems for CSS example reuse [2] provide
greater instructional scaffolding, but do not expose the
original source code. Snippets generated by these tools
may procedurally mimic an element’s appearance, but do
not reflect style practices used by experienced web
designers.

The conceptual contribution of this paper is the idea of
deriving relevant source code from the visual significance of
a feature. We illustrate this idea with Ply, a system for
generating low-barrier learning materials for web design
from complex professional webpages. Ply integrates with
the CDT inspector to hide irrelevant CSS and provide
affordances for inspecting DOM structures in isolation. To
automatically identify irrelevant properties, we introduce a
technique called visual regression pruning, which uses
pixel-level screenshot comparison to compute the relevance
of a range of code. Visual regression pruning starts by

1http://getbootstrap.com/
2https://developers.google.com/web/tools/chrome-devtools/

capturing a screenshot of the webpage, then disables the
range of source code and captures another screenshot. If
the two screenshots are identical, the code is pruned. Ply
uses visual regression pruning to eliminate false leads from
inspected CSS, helping developers identify relevant code
more quickly.

After reviewing related work, we present Ply’s iterative
design process and preliminary evaluation. During user
testing, Ply helped student web developers locate and
reproduce relevant CSS more quickly from complex
professional webpages. We present a case study using Ply
to reproduce a complex search bar from the Airbnb
homepage. Ply displays an average of 49% fewer
properties per element, compared to the CDT.

Related Work
Authentic learning [9] suggests that activities and materials
should reflect real-world problems of personal interest to
learners. In particular, Dorn et al. [3] show that web
developers are driven to learn by project demands and the
desire to remain up-to-date with standards. Despite the
availability of professional websites as examples, however,
developers struggle to gain authentic practice with existing
inspection tools. Accordingly, our goal is to surface
feature-relevant source code in a more meaningful way than
simply displaying lists of properties for each element. Ply
extends authentic example creation to web design, allowing
developers to understand complex professional webpages
of personal interest.

Recent work in source discovery explores the creation of
authentic learning materials from the open web, allowing
developers to learn from professionally written examples of
their choosing. Telescope [6], Unravel [5], Scry [1], and
FireCrystal [8] each contribute methods for guided

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

131

http://getbootstrap.com/
https://developers.google.com/web/tools/chrome-devtools/

discovery of source code for dynamic behaviors, but
overlook the static analysis of CSS source for an element
and its children. Specifically, Telescope allows users to see
a small subset of JavaScript responsible for a dynamic
effect, while Scry helps developers identify HTML and CSS
differences during an interaction. Ply builds on this
conceptual space with a novel technique for identifying
relevant CSS for a static webpage feature.

Most relevant to our work, WebCrystal [2] simplifies CSS
inspection by allowing developers to ask questions about an
element’s appearance, then generating a code snippet from
its computed styles. Whereas WebCrystal hides the source
style cascade to avoid overwhelming developers, Ply
exposes the original source to promote authentic learning,
with affordances to prevent information overload. In contrast
to WebCrystal, Ply augments the professional Chrome
Developer Tools to be more accessible to novices.

Visualization techniques from related systems help
developers evaluate the visual output of their programs.
Gliimpse [4] performs linear interpolation to animate a
document from markup to output, but does not support
CSS. Visual regression testing services such as Percy use
screenshot comparison to detect breaking changes to a UI
codebase. SeeSS [7] integrates real-time visual regression
testing into an IDE. Ply introduces visual regression pruning
to automatically determine relevance in visual source code.
Our system targets developers interested in exploring
professional webpages, where an existing codebase may
not be available.

(a) CDT

(b) Ply

Figure 2: For matched CSS rules
affecting multiple selectors, Ply
only displays the selectors
matching the current node. System Description

Ply augments the CDT element inspector by determining
CSS property relevance, and simplifies the user interface
with affordances for focusing on an individual DOM subtree.

DOM inspection theoretically allows developers to learn by
example, using any webpage of their choosing. In practice,
current tools provide insufficient scaffolding for complex
examples. Using the CDT element inspector, the developer
must search through the entire cascade of matched styles,
many of which are overridden or irrelevant to the current
webpage state. To explore the component’s internal
structure in the DOM panel, she must keep track of its place
amid hundreds of similar lines in the DOM hierarchy, even
though she is only interested in the component’s subtree.

Isolating a Component in the DOM Panel
Ply’s DOM panel highlights currently selected nodes, fading
out ancestors and siblings. With full DOM hierarchy
navigation available, a developer can visually isolate the
subtree of interest. As the developer expands the node’s
children, Ply outlines each descendant subtree, using an
opacity affordance to convey the current depth (Figure 1).
For each node, Ply displays id, class, and placeholder
attributes, since developers in needfinding reported using
these attributes to distinguish between nodes in the DOM
hierarchy. Other attributes, such as data identifiers injected
by third-party frameworks, are hidden.

Inspecting CSS Styles
With potentially several dozen CSS properties applied to a
single element, Ply displays the most relevant pruned
subset of these properties, in descending order. Ply only
displays properties whose removal changes the webpage
visually. Developers can easily identify whether a property
is directly applied or inherited using either of Ply’s two
formats. For properties defined in CSS rules with multiple
selectors, Ply only displays the selectors matching the
current node (Figure 2).

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

132

Implementation
Ply’s UI affordances are implemented as modifications to
the CDT front-end that communicate with a server to
compute CSS property relevance using a technique called
visual regression pruning.

(a) Original image.

(b) After disabling border: none;

(c) Visual regression

Figure 3: Visual regression
pruning uses image comparison to
quantify the impact of removing a
CSS property. In this example, we
test the removal of border:
none; on an input element.

Visual regression pruning determines whether a CSS
property is irrelevant by disabling the property, capturing a
screenshot of the resulting webpage, and comparing the
screenshot to a baseline captured with all properties
enabled (Figure 3). If there is no visual regression between
screenshots, Ply removes the property from the CDT
inspector.

Ply communicates with the browser using the Chrome
Remote Debugging Protocol. When the developer selects
an element for inspection, the server emits an event over
the protocol. Ply responds by issuing a request for the
element’s matched styles, as well as a baseline screenshot
of the webpage. For each matched property, Ply completes
the following process:

Figure 4: Developers
reverse-engineered this form on
the Uber homepage.

1. Client issues an edit request to remove the property
from the source stylesheet.

2. Protocol responds with a screenshot of the resulting
webpage.

3. Client calculates the pixel-level difference between
the new screenshot and the baseline, using the
Mapbox Pixelmatch algorithm.3 If the difference is
zero, the property is flagged for pruning.

4. Client issues an edit request to restore the property in
its source stylesheet, so that other properties can be
tested independently.

5. If all properties have been checked, the client issues
a request to hide the pruned properties from the CDT
front-end.

3https://github.com/mapbox/pixelmatch/

Whereas prior systems rely on client-side computed styles
[1, 2], Ply prunes and exposes the actual source styles for a
webpage, allowing developers to learn from the author’s
implementation and architectural decisions. Computed
styles often differ significantly from their source, do not
reflect authentic development practices, and generalize
poorly to alternate contexts. For instance, width: 20%;
might be computed as width: 233.33333px; on render.
The resulting code snippet obscures the author’s decision to
use a fluid-width layout, fails to demonstrate how properties
cascade, and renders differently in a resized viewport.

Design Process and Insights
We conducted an initial need-finding study with six student
web developers, followed by two iterations of prototype
testing with two student web developers each. During
needfinding, each developer spent 40 minutes attempting to
replicate two components from complex professional
webpages. Features included a full-screen responsive
background image (Tumblr), a large multi-column footer
(Slack), and a grid layout (Dribbble). In prototype testing,
users spent 20 minutes attempting to replicate a form with
custom-styled input fields (Uber) (Figure 4). Developers
were compensated $15 each for the needfinding study, and
$20 each for prototype testing.

Our initial needfinding study used the Chrome CDT as a
state-of-the-art baseline. Showing the full DOM hierarchy
and CSS cascade overwhelmed novice developers
searching for relevant code: “When I first looked at [the
CDT], I didn’t know how to make this useful, and I still don’t
really know.” Subsequent prototypes added simplifying
affordances to the CDT element inspector. Our final
prototype implemented visual regression pruning to reduce
the number of properties shown in the CSS panel. We
arrived at Ply’s design based on two observations:

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

133

https://github.com/mapbox/pixelmatch/

Ineffective Properties

Figure 5: From top to bottom: an
unstyled button with browser
defaults, the results of Ply’s
pruning, and the original button
extracted in its entirety from Airbnb.
The pruned version bears strong
similarities to the original, reduced
from 43 to 20 individual CSS
properties (a 53 percent decrease).

Developers adopted a trial-and-error approach to CSS
inspection, guessing which properties to copy into their
editor, but many of these properties had no effect on the
developer’s output. The two developers who tested our first
prototype copied 14 and 15 ineffective properties, eight of
which were listed in the CDT as the most relevant to the
selected element. These false leads caused universal
frustration. Although the CDT allows developers to toggle
individual properties on and off, this approach is
time-consuming to carry out manually for an entire
component. Ply reduces the guesswork associated with
CSS inspection by only showing properties with a direct
effect on the webpage. Of the two developers who tested
our final prototype with pruning, neither copied any
ineffective properties.

After successfully locating a key property using our final
prototype, one developer reflected on the benefits of source
inspection: “Usually when I’m using CSS I feel kind of
stupid, like I’m just changing random numbers to guess how
big it’s gonna make it. So it’s good just to see examples, like
I can see the numbers they actually used so I don’t have to
guess around to try to get the same size that they got.”

Element Pruned % Decrease

BUTTON 35 34.75%
DIV 6.47 54.01%
INPUT 36.33 35.03%
LABEL 10.4 57.80%
SELECT 40 35.71%
SPAN 12 38.1%

Table 1: Average CSS property
reduction, by element name, from
the Airbnb case study.

Keeping Track of DOM Position
We observed developers lose their position in the DOM
inspector while switching back and forth between the
webpage, inspector, and code editor. Within the DOM
inspector, developers struggled to visually differentiate
between the hundreds of similar-looking nodes: “There’s
just a lot here, I don’t understand what any of these
[attributes] mean.” Since HTML is a hierarchical language, a
node and its descendants often correspond to a component
on a webpage. Ply uses color and outline affordances to
help developers isolate and explore the subtree for a

component. Developers found these improvements helpful
compared to the CDT default: “If it didn’t focus, I might just
get lost where I was looking, and when I first open [the
inspector] it’s really overwhelming before it knows what I’m
trying to focus on.”

Case Study
To evaluate visual regression pruning, we conducted a case
study on a professional website with an interesting CSS
implementation. The Airbnb home page4 contains a
four-part search bar with block-level input labels, selection
and input elements, and a large red “Submit” button.

Ply’s CSS inspector view displays significantly fewer
properties than the original source. We reconstruct the
entire search bar using only 38 properties. As a point of
comparison, the “Submit” button element contains 43
matched CSS properties in the original source code, but
pruning results in a 53% decrease to 20 properties which
suffice to construct a nearly identical button (Figure 5).
Although the reconstructed version lacks rounded corners,
Ply captures the element’s core appearance with
significantly less code. Across the 30 elements in the DOM
subtree, Ply prunes an average of 13.5 properties per
element, a 49.79% decrease. Table 1 shows the average
number of properties pruned for each element type. Ply
prunes the most properties from SELECT and INPUT
elements (40 and 36.33, respectively), but LABEL elements
had the largest percentage decrease (57.80%).

Discussion and Future Work
Ply demonstrates the feasibility of using visual regression
pruning to support authentic exploration of complex
webpage designs. In particular, Ply successfully hides
ineffective CSS properties from the inspector, saving

4http://airbnb.com/

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

134

http://airbnb.com/

developers time by eliminating false leads. Whereas prior
systems use computed styles to simplify the overwhelming
CSS cascade, Ply’s conceptual focus on authentic learning
exposes the original source code, while filtering out
irrelevant properties to minimize complexity.

A core limitation of visual regression pruning is the
sensitivity of pixel-level image comparison. Examples of
features which produce false positives in visual regression
include: CSS keyframe animations, photographic
backgrounds which are more prone to jittering the
comparison algorithm, and non-deterministic interface
elements, such as a calendar widget whose display
changes depending on the date. Ply does not currently have
any means for capturing state changes driven by JavaScript.

Our future work aims to create predictive models to
generate the most likely relevance of CSS properties for a
feature. By tracking the CSS implementation patterns of
developers, we intend to understand whether the timing of
CSS properties added to a DOM element correlates with
the relevance of visual outcome from a property to its effect.

Acknowledgements
We thank Haoqi Zhang, Josh Hibschman, and the members
of the Design, Technology, and Research program for their
valuable guidance and feedback. This work was assisted by
an Undergraduate Research Grant from Northwestern
University’s Office of the Provost.

References
[1] Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015.

Explaining Visual changes in web interfaces. In UIST
2015. ACM, 259–268.
http://doi.org/10.1145/2807442.2807473

[2] Kerry Shih-Ping Chang and Brad A. Myers. 2012.
WebCrystal: Understanding and reusing examples in
web authoring. In CHI 2012.
http://doi.org/10.1145/2207676.2208740

[3] Brian Dorn and Mark Guzdial. 2010. Learning on the
job: Characterizing the programming knowledge and
learning strategies of web designers. In CHI 2010.
http://doi.org/10.1145/1753326.1753430

[4] Pierre Dragicevic, Stephane Huot, and Fanny Chevalier.
2011. Gliimpse: Animating from markup code to
rendered documents and vice versa. In UIST 2011.
http://doi.org/10.1145/2047196.2047229

[5] Joshua Hibschman and Haoqi Zhang. 2015. Unravel:
Rapid Web Application reverse engineering via
interaction recording, source tracing, and library
detection. In UIST 2015.
http://doi.org/10.1145/2807442.2807468

[6] Joshua Hibschman and Haoqi Zhang. 2016. Telescope:
Fine-tuned discovery of interactive web UI feature
implementation. In UIST 2016.
http://doi.org/10.1145/2984511.2984570

[7] Hsiang-Sheng Liang, Kuan-Hung Kuo, Po-Wei Lee,
Yu-Chien Chan, Yu-Chin Lin, and Mike Y. Chen. 2013.
SeeSS: Seeing what I broke – visualizing change
impact of Cascading Style Sheets (CSS). In UIST
2013. http://doi.org/10.1145/2501988.2502006

[8] Stephen Oney and Brad Myers. 2009. FireCrystal:
Understanding interactive behaviors in dynamic web
pages. In VL/HCC 2009.
http://doi.org/10.1109/VLHCC.2009.5295287

[9] David Williamson Shaffer and Mitchel Resnick. 1999.
Thick" Authenticity: New Media And Authentic
Learning. In J. Interact. Learn. Res. 10, 2: 195–215.

Student Research Competition CHI 2017, May 6–11, 2017, Denver, CO, USA

135

http://doi.org/10.1145/2807442.2807473
http://doi.org/10.1145/2207676.2208740
http://doi.org/10.1145/1753326.1753430
http://doi.org/10.1145/2047196.2047229
http://doi.org/10.1145/2807442.2807468
http://doi.org/10.1145/2984511.2984570
http://doi.org/10.1145/2501988.2502006
http://doi.org/10.1109/VLHCC.2009.5295287

	Introduction
	Related Work
	System Description
	Isolating a Component in the DOM Panel
	Inspecting CSS Styles
	Implementation

	Design Process and Insights
	Ineffective Properties
	Keeping Track of DOM Position

	Case Study
	Discussion and Future Work
	Acknowledgements
	References

